# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# **Redetermination and absolute** configuration of atalaphylline

# Hoong-Kun Fun,<sup>a</sup>\* + Chin Sing Yeap<sup>a</sup>§ and Suchada Chantrapromma<sup>b</sup>¶

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, and <sup>b</sup>Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Received 14 December 2009; accepted 17 December 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.025; wR factor = 0.068; data-to-parameter ratio = 8.9.

The title acridone alkaloid [systematic name: 1,3,5-trihydroxy-2,4-bis(3-methylbut-2-enyl)acridin-9(10H)-one], C<sub>23</sub>H<sub>25</sub>NO<sub>4</sub>, has previously been reported as crystallizing in the chiral orthorhombic space group  $P2_12_12_1$  [Chantrapromma et al. (2010). Acta Cryst. E66, 081-082] but the absolute configuration could not be determined from data collected with Mo radiation. The absolute configuration has now been determined by refinement of the Flack parameter with data collected using Cu radiation. All features of the molecule and its crystal packing are similar to those previously described.

## **Related literature**

For details of acridone alkaloids see: Basu & Basa (1972). For the previous structure determination, see: Chantrapromma et al. (2010). For hydrogen-bond motifs, see Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).



<sup>‡</sup> Thomson Reuters ResearcherID: A-3561-2009.

## **Experimental**

#### Crystal data

C23H25NO4  $M_r = 379.44$ Orthorhombic,  $P2_12_12_1$ a = 5.0838 (1) Å b = 15.0262 (3) Å c = 24.6412 (4) Å

#### Data collection

Bruker APEX Duo CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{\min} = 0.755, T_{\max} = 0.970$ 

#### Refinement

\_ ..

| $R[F^2 > 2\sigma(F^2)] = 0.025$ | $\Delta \rho_{\rm max} = 0.12 \ {\rm e} \ {\rm \AA}^{-3}$ |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.068$               | $\Delta \rho_{\rm min} = -0.10 \text{ e} \text{ Å}^{-3}$  |
| S = 1.06                        | Absolute structure: Flack (1983),                         |
| 3145 reflections                | 1280 Friedel pairs                                        |
| 354 parameters                  | Flack parameter: 0.05 (13)                                |
| All H-atom parameters refined   |                                                           |

V = 1882.35 (6) Å<sup>3</sup>

 $0.40 \times 0.21 \times 0.04 \text{ mm}$ 

11768 measured reflections

3145 independent reflections

3099 reflections with  $I > 2\sigma(I)$ 

Cu Ka radiation

 $\mu = 0.74 \text{ mm}^{-1}$ 

T = 150 K

 $R_{\rm int}=0.017$ 

Z = 4

| l able 1      |          |     |    |
|---------------|----------|-----|----|
| Hydrogen-bond | geometry | (Å, | °) |

| $D - H \cdots A$                   | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------|------------|-------------------------|--------------|--------------------------------------|
| O1−H1 <i>O</i> 1···O2              | 0.915 (19) | 1.699 (19)              | 2.5528 (13)  | 154.1 (17)                           |
| O3−H1 <i>O</i> 3···O2 <sup>i</sup> | 0.845 (19) | 1.923 (19)              | 2.7501 (12)  | 165.9 (19)                           |
| $N1 - H1N1 \cdots O3$              | 0.880 (18) | 2.333 (18)              | 2.6893 (13)  | 104.3 (13)                           |
| $C8-H8A\cdots O2^{i}$              | 0.991 (19) | 2.565 (18)              | 3.2918 (16)  | 130.1 (13)                           |
| $C14 - H14A \cdots O4$             | 0.969 (19) | 2.254 (17)              | 2.7752 (16)  | 112.6 (12)                           |
| C19−H19A…O1                        | 0.957 (16) | 2.352 (15)              | 2.8197 (17)  | 109.6 (11)                           |
|                                    |            |                         |              |                                      |

Symmetry code: (i) -x + 2,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank the Malaysian Government and the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. Mr Nawong Boonnak is acknowledged for supplying the atalaphylline crystal. CSY thanks USM for the award of a USM Fellowship. SC thanks Prince of Songkla University for financial support through the Crystal Materials Research Unit.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2714).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Basu, D. & Basa, S. C. (1972). J. Org. Chem. 37, 3035-3036.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

<sup>§</sup> Thomson Reuters ResearcherID: A-5523-2009.

<sup>¶</sup> Thomson Reuters ResearcherID: A-5085-2009. Additional correspondence author, e-mail: suchada.c@psu.ac.th.

 Chantrapromma, S., Boonnak, N., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, 081–082.
 Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.

### Acta Cryst. (2010). E66, o252-o253 [doi:10.1107/S160053680905449X]

# Redetermination and absolute configuration of atalaphylline

# H.-K. Fun, C. S. Yeap and S. Chantrapromma

#### Comment

The title acridone alkaloid (I) known as atalaphylline (Basu & Basa, 1972), was isolated from the roots of *Atalantia mono-phylla* Corrêa, a mangrove plant which was collected from Trang province in the southern part of Thailand. Although (I) has been previously reported (Chantrapromma *et al.*, 2010), the absolute configuration could not be determined due to insufficient anomalous dispersion from the light atoms using the data set collected with Mo radiation. The data of the same sample was recollected using Cu radiation with our newly-installed Bruker Apex-Duo CCD diffractometer and the absolute configuration was determined by making use of the large anomalous scattering of Cu Ka X-radiation with the Flack parameter being refined to 0.05 (13). We report herein the crystal structure of (I) with data collected using Cu radiation.

Fig. 1 shows the molecular structure of (I), bond lengths and angles are closely similar to those previously described (Chantrapromma *et al.*, 2010). (I) is chiral even though it has no chiral center because its mirror image cannot be superposed onto itself. This is due to the arrangements of the two 3-methylbut-2-enyl side-chains at atoms C1 and C12. (I) crystallized as a single enantiomer in chiral orthorhombic  $P2_12_12_1$  space group. The current structure determination represents a significant improvement compared with the structure determined from the data taken with Mo radiation and it confirmed the absolute conformation of the side-chains for (I). To be precise the two 3-methyl-2-enyl groups at C1 and C12 are attached in such a way that these two side-chains are below the acridone molecular plane indicating the (-)-anticlinal conformation with the torsion angles C2–C1–C19–C20 and C13–C12–C14–C15 are -102.65 (13) and -119.77 (33)°, respectively.

Fig. 2 shows the crystal packing of (I). Intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1) linked the molecules into infinite one dimensional screw-chains along the [0 1 0] direction. These features are similar to those of the previous report by Chantrapromma *et al.* (2010) except there is an additional weak intermolecular C—H···O interaction and a  $\pi$ - $\pi$  interaction with a Cg<sub>1</sub>···Cg<sub>2</sub> distance of 3.7643 (7) Å (symmetry code: -1+x, y, z); Cg<sub>1</sub> and Cg<sub>2</sub> are the centroids of C3–C5/C10–C11/N1 and C5–C10 rings, respectively. These differences are due to the fact that all the hydrogen atoms are refined freely whereas in previous report by Chantrapromma *et al.* (2010), the hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms.

### Experimental

The compound was isolated and crystal grown as reported by Chantrapromma et al. (2010).

## Refinement

All H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.66 Å from C3 and the deepest hole is located at 0.84 Å from H1N1. 1280 Friedel pairs were used to find the absolute configuration.

**Figures** 



Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atomnumbering scheme. Intramolecular hydrogen bonds are shown as dashed lines.



Fig. 2. The crystal packing of (I) viewed along the *a* axis, showing screw chains along the [0 1 0] direction. Hydrogen bonds are shown as dashed lines.

# 1,3,5-trihydroxy-2,4-bis(3-methylbut-2-enyl)acridin-9(10H)-one

Crystal data

| C <sub>23</sub> H <sub>25</sub> NO <sub>4</sub> | F(000) = 808                                   |
|-------------------------------------------------|------------------------------------------------|
| $M_r = 379.44$                                  | $D_{\rm x} = 1.339 {\rm ~Mg~m}^{-3}$           |
| Orthorhombic, $P2_12_12_1$                      | Cu K $\alpha$ radiation, $\lambda = 1.54178$ Å |
| Hall symbol: P 2ac 2ab                          | Cell parameters from 3145 reflections          |
| a = 5.0838 (1)  Å                               | $\theta = 6.1 - 64.9^{\circ}$                  |
| b = 15.0262 (3) Å                               | $\mu = 0.74 \text{ mm}^{-1}$                   |
| c = 24.6412 (4) Å                               | T = 150  K                                     |
| V = 1882.35 (6) Å <sup>3</sup>                  | Plate, brown                                   |
| Z = 4                                           | $0.40 \times 0.21 \times 0.04 \ mm$            |

# Data collection

| Bruker APEX Duo CCD area-detector diffractometer                     | 3145 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: sealed tube                                        | 3099 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.017$                                                     |
| $\phi$ and $\omega$ scans                                            | $\theta_{\text{max}} = 64.9^{\circ}, \ \theta_{\text{min}} = 6.1^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2009) | $h = -5 \rightarrow 5$                                                    |
| $T_{\min} = 0.755, T_{\max} = 0.970$                                 | $k = -17 \rightarrow 17$                                                  |
| 11768 measured reflections                                           | $l = -28 \rightarrow 28$                                                  |
|                                                                      |                                                                           |

# Refinement

| Refinement on $F^2$        | Hydrogen site location: inferred from neighbouring sites |
|----------------------------|----------------------------------------------------------|
| Least-squares matrix: full | All H-atom parameters refined                            |

| $R[F^2 > 2\sigma(F^2)] = 0.025$                                | $w = 1/[\sigma^2(F_0^2) + (0.0452P)^2 + 0.1806P]$<br>where $P = (F_0^2 + 2F_c^2)/3$                               |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| $wR(F^2) = 0.068$                                              | $(\Delta/\sigma)_{max} < 0.001$                                                                                   |
| <i>S</i> = 1.06                                                | $\Delta \rho_{max} = 0.12 \text{ e } \text{\AA}^{-3}$                                                             |
| 3145 reflections                                               | $\Delta \rho_{\rm min} = -0.10 \text{ e} \text{ Å}^{-3}$                                                          |
| 354 parameters                                                 | Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008),<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| 0 restraints                                                   | Extinction coefficient: 0.0020 (7)                                                                                |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1280 Friedel pairs                                                              |
| Secondary atom site location: difference Fourier map           | Flack parameter: 0.05 (13)                                                                                        |

# Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 150.0 (1) K.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x             | У           | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|-------------|-------------|---------------------------|
| O1   | 0.33887 (19)  | 0.33672 (5) | 0.16257 (4) | 0.0319 (2)                |
| H1O1 | 0.469 (4)     | 0.3351 (12) | 0.1882 (7)  | 0.049 (5)*                |
| O2   | 0.72372 (18)  | 0.37879 (5) | 0.22397 (3) | 0.0312 (2)                |
| O3   | 0.90459 (19)  | 0.77102 (5) | 0.22853 (3) | 0.0318 (2)                |
| H1O3 | 0.997 (4)     | 0.8077 (12) | 0.2462 (7)  | 0.044 (4)*                |
| O4   | -0.06425 (19) | 0.56721 (6) | 0.06026 (4) | 0.0361 (2)                |
| H1O4 | -0.139 (5)    | 0.5215 (14) | 0.0460 (8)  | 0.063 (6)*                |
| N1   | 0.6200 (2)    | 0.63969 (6) | 0.18325 (4) | 0.0264 (2)                |
| H1N1 | 0.606 (4)     | 0.6957 (12) | 0.1732 (6)  | 0.038 (4)*                |
| C1   | 0.1336 (2)    | 0.44827 (8) | 0.11088 (5) | 0.0273 (3)                |
| C2   | 0.3211 (2)    | 0.42334 (8) | 0.14856 (5) | 0.0261 (3)                |
| C3   | 0.4921 (2)    | 0.48690 (7) | 0.17304 (4) | 0.0251 (3)                |
| C4   | 0.6888 (2)    | 0.46022 (8) | 0.21176 (5) | 0.0262 (3)                |
| C5   | 0.8448 (3)    | 0.52966 (8) | 0.23719 (5) | 0.0269 (3)                |
| C6   | 1.0361 (3)    | 0.50956 (8) | 0.27663 (5) | 0.0331 (3)                |
| H6A  | 1.074 (3)     | 0.4477 (10) | 0.2852 (6)  | 0.030 (3)*                |
| C7   | 1.1787 (3)    | 0.57660 (9) | 0.29998 (6) | 0.0381 (3)                |
| H7A  | 1.318 (4)     | 0.5600 (11) | 0.3267 (7)  | 0.045 (4)*                |
|      |               |             |             |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C8   | 1.1372 (3)  | 0.66535 (9)  | 0.28512 (5)  | 0.0343 (3) |
|------|-------------|--------------|--------------|------------|
| H8A  | 1.240 (4)   | 0.7140 (12)  | 0.3021 (7)   | 0.057 (5)* |
| C9   | 0.9535 (3)  | 0.68681 (8)  | 0.24628 (5)  | 0.0281 (3) |
| C10  | 0.8034 (2)  | 0.61840 (8)  | 0.22173 (5)  | 0.0259 (3) |
| C11  | 0.4625 (2)  | 0.57783 (7)  | 0.15855 (5)  | 0.0255 (2) |
| C12  | 0.2744 (2)  | 0.60509 (8)  | 0.12029 (5)  | 0.0274 (3) |
| C13  | 0.1178 (2)  | 0.53936 (8)  | 0.09727 (5)  | 0.0277 (3) |
| C14  | 0.2289 (3)  | 0.70240 (8)  | 0.10748 (6)  | 0.0319 (3) |
| H14A | 0.081 (4)   | 0.7041 (11)  | 0.0827 (7)   | 0.049 (5)* |
| H14B | 0.184 (3)   | 0.7325 (11)  | 0.1402 (7)   | 0.040 (4)* |
| C15  | 0.4574 (3)  | 0.74968 (8)  | 0.08153 (5)  | 0.0313 (3) |
| H15A | 0.544 (3)   | 0.7170 (10)  | 0.0517 (6)   | 0.041 (4)* |
| C16  | 0.5452 (3)  | 0.83055 (8)  | 0.09368 (5)  | 0.0346 (3) |
| C17  | 0.7648 (4)  | 0.87331 (12) | 0.06276 (8)  | 0.0536 (4) |
| H17A | 0.917 (5)   | 0.8886 (16)  | 0.0890 (10)  | 0.087 (7)* |
| H17B | 0.829 (4)   | 0.8328 (14)  | 0.0332 (8)   | 0.065 (6)* |
| H17C | 0.715 (4)   | 0.9270 (13)  | 0.0451 (7)   | 0.053 (5)* |
| C18  | 0.4364 (4)  | 0.88686 (9)  | 0.13869 (7)  | 0.0469 (4) |
| H18A | 0.281 (5)   | 0.8592 (14)  | 0.1596 (9)   | 0.071 (6)* |
| H18B | 0.563 (6)   | 0.8967 (17)  | 0.1648 (10)  | 0.096 (8)* |
| H18C | 0.371 (4)   | 0.9448 (14)  | 0.1242 (8)   | 0.063 (5)* |
| C19  | -0.0548 (3) | 0.38053 (8)  | 0.08652 (5)  | 0.0301 (3) |
| H19A | -0.048 (3)  | 0.3304 (11)  | 0.1104 (6)   | 0.039 (4)* |
| H19B | -0.240 (4)  | 0.4055 (10)  | 0.0883 (6)   | 0.042 (4)* |
| C20  | 0.0167 (3)  | 0.35223 (7)  | 0.02981 (5)  | 0.0312 (3) |
| H20A | 0.179 (3)   | 0.3171 (10)  | 0.0264 (6)   | 0.037 (4)* |
| C21  | -0.1104 (3) | 0.37003 (8)  | -0.01615 (5) | 0.0351 (3) |
| C22  | -0.0091 (4) | 0.33621 (11) | -0.06969 (6) | 0.0509 (4) |
| H22A | -0.149 (5)  | 0.3035 (14)  | -0.0897 (8)  | 0.069 (6)* |
| H22B | 0.043 (4)   | 0.3915 (13)  | -0.0939 (8)  | 0.061 (5)* |
| H22C | 0.179 (5)   | 0.2984 (15)  | -0.0653 (9)  | 0.080 (7)* |
| C23  | -0.3525 (3) | 0.42646 (13) | -0.02079 (7) | 0.0520 (4) |
| H23A | -0.490 (5)  | 0.3962 (16)  | -0.0444 (9)  | 0.083 (7)* |
| H23B | -0.312 (6)  | 0.4882 (19)  | -0.0386 (10) | 0.099 (8)* |
| H23C | -0.438 (4)  | 0.4365 (11)  | 0.0152 (8)   | 0.050 (5)* |
|      |             |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|------------|------------|------------|-------------|-------------|-------------|
| O1 | 0.0368 (5) | 0.0218 (4) | 0.0370 (5) | -0.0033 (3) | -0.0036 (4) | -0.0006 (3) |
| O2 | 0.0342 (5) | 0.0199 (4) | 0.0395 (5) | 0.0001 (4)  | -0.0059 (4) | 0.0012 (3)  |
| O3 | 0.0387 (5) | 0.0210 (4) | 0.0357 (4) | -0.0020 (4) | -0.0080 (4) | -0.0015 (3) |
| O4 | 0.0340 (5) | 0.0337 (5) | 0.0406 (5) | -0.0034 (4) | -0.0116 (4) | 0.0020 (4)  |
| N1 | 0.0280 (5) | 0.0194 (5) | 0.0318 (5) | -0.0012 (4) | -0.0023 (4) | -0.0003 (4) |
| C1 | 0.0269 (6) | 0.0283 (6) | 0.0266 (5) | -0.0036 (5) | 0.0034 (5)  | -0.0033 (4) |
| C2 | 0.0280 (6) | 0.0228 (5) | 0.0275 (5) | -0.0009 (5) | 0.0051 (5)  | -0.0020 (4) |
| C3 | 0.0253 (6) | 0.0234 (5) | 0.0266 (5) | -0.0007 (5) | 0.0032 (5)  | -0.0022 (4) |
| C4 | 0.0271 (6) | 0.0234 (5) | 0.0280 (5) | 0.0009 (4)  | 0.0023 (5)  | -0.0008 (4) |

| C5  | 0.0286 (6)  | 0.0229 (6)  | 0.0290 (6)  | -0.0007 (5) | 0.0010 (5)  | -0.0014 (4) |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C6  | 0.0396 (7)  | 0.0238 (6)  | 0.0358 (6)  | 0.0027 (5)  | -0.0084 (6) | 0.0009 (5)  |
| C7  | 0.0438 (8)  | 0.0299 (6)  | 0.0405 (7)  | -0.0008 (6) | -0.0164 (6) | -0.0005 (5) |
| C8  | 0.0402 (7)  | 0.0271 (6)  | 0.0356 (7)  | -0.0038 (5) | -0.0096 (6) | -0.0039 (5) |
| C9  | 0.0324 (7)  | 0.0222 (5)  | 0.0298 (6)  | -0.0015 (5) | 0.0004 (5)  | -0.0027 (4) |
| C10 | 0.0261 (6)  | 0.0254 (6)  | 0.0263 (6)  | 0.0013 (5)  | 0.0012 (5)  | -0.0011 (4) |
| C11 | 0.0245 (6)  | 0.0234 (5)  | 0.0285 (6)  | -0.0012 (5) | 0.0028 (5)  | -0.0016 (4) |
| C12 | 0.0254 (6)  | 0.0261 (6)  | 0.0306 (6)  | 0.0000 (5)  | 0.0001 (5)  | -0.0003 (5) |
| C13 | 0.0255 (6)  | 0.0295 (6)  | 0.0281 (5)  | -0.0004 (5) | 0.0012 (5)  | 0.0012 (5)  |
| C14 | 0.0286 (7)  | 0.0269 (6)  | 0.0403 (7)  | 0.0007 (5)  | -0.0047 (6) | 0.0011 (5)  |
| C15 | 0.0329 (7)  | 0.0300 (6)  | 0.0310 (6)  | 0.0029 (6)  | -0.0039 (5) | 0.0032 (5)  |
| C16 | 0.0325 (7)  | 0.0297 (6)  | 0.0414 (7)  | -0.0017 (5) | -0.0116 (6) | 0.0106 (5)  |
| C17 | 0.0408 (8)  | 0.0440 (8)  | 0.0759 (12) | -0.0058 (7) | -0.0023 (8) | 0.0237 (8)  |
| C18 | 0.0621 (10) | 0.0288 (6)  | 0.0497 (8)  | -0.0040 (7) | -0.0127 (8) | -0.0037 (6) |
| C19 | 0.0311 (7)  | 0.0291 (6)  | 0.0300 (6)  | -0.0058 (6) | -0.0005 (5) | -0.0009 (5) |
| C20 | 0.0338 (7)  | 0.0245 (5)  | 0.0353 (6)  | -0.0031 (5) | 0.0022 (5)  | -0.0027 (5) |
| C21 | 0.0413 (7)  | 0.0318 (6)  | 0.0323 (6)  | -0.0113 (6) | -0.0007 (6) | -0.0002 (5) |
| C22 | 0.0705 (11) | 0.0481 (8)  | 0.0341 (7)  | -0.0124 (8) | 0.0028 (7)  | -0.0042 (6) |
| C23 | 0.0417 (8)  | 0.0680 (11) | 0.0465 (9)  | 0.0000 (8)  | -0.0128 (7) | -0.0005 (8) |
|     |             |             |             |             |             |             |

Geometric parameters (Å, °)

| O1—C2   | 1.3497 (15) | C12—C14  | 1.5137 (16) |
|---------|-------------|----------|-------------|
| O1—H1O1 | 0.92 (2)    | C14—C15  | 1.5045 (18) |
| O2—C4   | 1.2725 (14) | C14—H14A | 0.97 (2)    |
| O3—C9   | 1.3617 (14) | C14—H14B | 0.954 (16)  |
| O3—H1O3 | 0.845 (19)  | C15—C16  | 1.3285 (18) |
| O4—C13  | 1.3651 (15) | C15—H15A | 0.986 (16)  |
| O4—H1O4 | 0.86 (2)    | C16—C17  | 1.497 (2)   |
| N1—C10  | 1.3679 (16) | C16—C18  | 1.501 (2)   |
| N1—C11  | 1.3695 (15) | C17—H17A | 1.03 (3)    |
| N1—H1N1 | 0.880 (17)  | С17—Н17В | 1.00 (2)    |
| C1—C2   | 1.3825 (18) | С17—Н17С | 0.95 (2)    |
| C1—C13  | 1.4114 (17) | C18—H18A | 1.03 (2)    |
| C1—C19  | 1.5209 (16) | C18—H18B | 0.92 (3)    |
| C2—C3   | 1.4254 (16) | C18—H18C | 1.00 (2)    |
| C3—C11  | 1.4203 (16) | C19—C20  | 1.5051 (17) |
| C3—C4   | 1.4393 (17) | С19—Н19А | 0.957 (16)  |
| C4—C5   | 1.4525 (16) | С19—Н19В | 1.015 (19)  |
| C5—C10  | 1.4026 (17) | C20—C21  | 1.3311 (19) |
| C5—C6   | 1.4078 (18) | C20—H20A | 0.982 (17)  |
| C6—C7   | 1.3679 (19) | C21—C23  | 1.499 (2)   |
| С6—Н6А  | 0.973 (15)  | C21—C22  | 1.505 (2)   |
| С7—С8   | 1.3990 (19) | C22—H22A | 0.99 (2)    |
| С7—Н7А  | 0.997 (18)  | С22—Н22В | 1.06 (2)    |
| C8—C9   | 1.3754 (18) | C22—H22C | 1.12 (3)    |
| C8—H8A  | 0.99 (2)    | С23—Н23А | 1.02 (3)    |
| C9—C10  | 1.4159 (17) | С23—Н23В | 1.05 (3)    |
| C11—C12 | 1.4041 (17) | C23—H23C | 0.999 (19)  |
|         |             |          |             |

| C12—C13                 | 1.3895 (17) |                            |                        |
|-------------------------|-------------|----------------------------|------------------------|
| C2—O1—H1O1              | 104.5 (11)  | C12—C14—H14A               | 106.0 (10)             |
| C9—O3—H1O3              | 109.9 (12)  | C15—C14—H14B               | 108.8 (10)             |
| C13—O4—H1O4             | 109.2 (14)  | C12—C14—H14B               | 108.6 (10)             |
| C10—N1—C11              | 123.22 (10) | H14A—C14—H14B              | 109.5 (14)             |
| C10—N1—H1N1             | 118.3 (11)  | C16—C15—C14                | 126.55 (13)            |
| C11—N1—H1N1             | 118.5 (11)  | C16—C15—H15A               | 118.3 (10)             |
| C2—C1—C13               | 117.48 (11) | C14—C15—H15A               | 115.1 (9)              |
| C2—C1—C19               | 121.19 (11) | C15—C16—C17                | 121.91 (15)            |
| C13—C1—C19              | 121.29 (11) | C15—C16—C18                | 123.95 (13)            |
| 01                      | 118.64 (10) | C17—C16—C18                | 114.14 (14)            |
| 01-C2-C3                | 119.81 (11) | C16—C17—H17A               | 109.5 (14)             |
| C1—C2—C3                | 121.55 (11) | C16—C17—H17B               | 110.5 (12)             |
| C11—C3—C2               | 118.26 (10) | H17A—C17—H17B              | 110.4 (19)             |
| C11 - C3 - C4           | 120 55 (10) | C16—C17—H17C               | 113 6 (12)             |
| $C_2 = C_3 = C_4$       | 121.18 (10) | H17A - C17 - H17C          | 107.3(12)              |
| 02 - 03 = 01            | 121.43 (11) | H17B—C17—H17C              | 105.5 (16)             |
| 02 - 04 - 05            | 120.84 (11) | C16— $C18$ — $H18A$        | 115 1 (12)             |
| $C_{3}$ $C_{4}$ $C_{5}$ | 117 72 (10) | C16—C18—H18B               | 110.1(12)<br>110.4(17) |
| C10-C5-C6               | 119.67 (11) | H18A—C18—H18B              | 104.6 (18)             |
| C10 - C5 - C4           | 118.94 (11) | C16-C18-H18C               | 110.5(10)              |
| C6-C5-C4                | 121 39 (11) | H18A - C18 - H18C          | 105.9(17)              |
| C7—C6—C5                | 119 90 (12) | H18B— $C18$ — $H18C$       | 110 (2)                |
| C7—C6—H6A               | 120.5 (9)   | C20—C19—C1                 | 113.79 (10)            |
| C5—C6—H6A               | 119 5 (9)   | C20—C19—H19A               | 109.9 (9)              |
| C6—C7—C8                | 120.79 (12) | C1-C19-H19A                | 105.1 (10)             |
| С6—С7—Н7А               | 118.0 (10)  | C20—C19—H19B               | 111.7 (9)              |
| С8—С7—Н7А               | 121.2 (10)  | C1—C19—H19B                | 108.6 (9)              |
| C9—C8—C7                | 120.54 (12) | H19A—C19—H19B              | 107.4 (14)             |
| C9—C8—H8A               | 118.7 (11)  | $C_{21}$ $C_{20}$ $C_{19}$ | 128.01 (13)            |
| С7—С8—Н8А               | 120.8 (11)  | C21—C20—H20A               | 116.2 (9)              |
| 03—C9—C8                | 124.42 (11) | C19—C20—H20A               | 115.8 (9)              |
| O3—C9—C10               | 116.04 (11) | C20—C21—C23                | 125.26 (13)            |
| C8—C9—C10               | 119.53 (11) | C20—C21—C22                | 120.79 (14)            |
| N1—C10—C5               | 120.86 (11) | C23—C21—C22                | 113.91 (14)            |
| N1—C10—C9               | 119.58 (11) | C21—C22—H22A               | 110.9 (12)             |
| C5—C10—C9               | 119.56 (11) | C21—C22—H22B               | 108.4 (10)             |
| N1—C11—C12              | 119.91 (10) | H22A—C22—H22B              | 106.7 (15)             |
| N1—C11—C3               | 118.64 (11) | C21—C22—H22C               | 112.3 (11)             |
| C12—C11—C3              | 121.44 (10) | H22A—C22—H22C              | 114.1 (16)             |
| C13—C12—C11             | 117.19 (11) | H22B—C22—H22C              | 103.9 (16)             |
| C13—C12—C14             | 120.93 (11) | C21—C23—H23A               | 110.8 (14)             |
| C11—C12—C14             | 121.73 (11) | C21—C23—H23B               | 111.8 (17)             |
| O4—C13—C12              | 116.30 (11) | H23A—C23—H23B              | 107 (2)                |
| O4—C13—C1               | 119.64 (11) | C21—C23—H23C               | 112.1 (11)             |
| C12—C13—C1              | 124.04 (11) | H23A—C23—H23C              | 106.0 (17)             |
| C15-C14-C12             | 115.26 (11) | H23B—C23—H23C              | 108.9 (17)             |
| C15—C14—H14A            | 108.6 (10)  |                            |                        |
|                         |             |                            |                        |

| C13—C1—C2—O1  | 179.51 (10)  | O3—C9—C10—C5    | 179.04 (11)  |
|---------------|--------------|-----------------|--------------|
| C19—C1—C2—O1  | 1.60 (17)    | C8—C9—C10—C5    | -0.24 (18)   |
| C13—C1—C2—C3  | 0.19 (17)    | C10-N1-C11-C12  | 178.53 (10)  |
| C19—C1—C2—C3  | -177.72 (10) | C10—N1—C11—C3   | -0.68 (17)   |
| O1—C2—C3—C11  | -178.11 (10) | C2-C3-C11-N1    | 177.81 (10)  |
| C1—C2—C3—C11  | 1.20 (17)    | C4—C3—C11—N1    | -1.72 (16)   |
| O1—C2—C3—C4   | 1.42 (16)    | C2-C3-C11-C12   | -1.39 (16)   |
| C1—C2—C3—C4   | -179.27 (11) | C4—C3—C11—C12   | 179.08 (11)  |
| C11—C3—C4—O2  | -177.79 (11) | N1-C11-C12-C13  | -179.03 (11) |
| C2—C3—C4—O2   | 2.69 (17)    | C3-C11-C12-C13  | 0.16 (17)    |
| C11—C3—C4—C5  | 3.05 (16)    | N1-C11-C12-C14  | -3.44 (17)   |
| C2—C3—C4—C5   | -176.47 (10) | C3-C11-C12-C14  | 175.74 (11)  |
| O2—C4—C5—C10  | 178.75 (11)  | C11—C12—C13—O4  | 179.87 (10)  |
| C3—C4—C5—C10  | -2.09 (16)   | C14—C12—C13—O4  | 4.25 (17)    |
| O2—C4—C5—C6   | -1.00 (18)   | C11—C12—C13—C1  | 1.35 (18)    |
| C3—C4—C5—C6   | 178.17 (12)  | C14—C12—C13—C1  | -174.27 (11) |
| C10—C5—C6—C7  | 0.6 (2)      | C2-C1-C13-O4    | 180.00 (10)  |
| C4—C5—C6—C7   | -179.67 (12) | C19—C1—C13—O4   | -2.10 (17)   |
| C5—C6—C7—C8   | -0.1 (2)     | C2-C1-C13-C12   | -1.53 (18)   |
| C6—C7—C8—C9   | -0.6 (2)     | C19—C1—C13—C12  | 176.37 (11)  |
| C7—C8—C9—O3   | -178.45 (13) | C13—C12—C14—C15 | -119.77 (13) |
| C7—C8—C9—C10  | 0.8 (2)      | C11—C12—C14—C15 | 64.81 (16)   |
| C11—N1—C10—C5 | 1.65 (17)    | C12-C14-C15-C16 | -136.97 (13) |
| C11—N1—C10—C9 | -178.35 (11) | C14—C15—C16—C17 | -176.18 (13) |
| C6-C5-C10-N1  | 179.57 (11)  | C14-C15-C16-C18 | 3.8 (2)      |
| C4C5C10N1     | -0.18 (17)   | C2-C1-C19-C20   | -102.65 (13) |
| C6—C5—C10—C9  | -0.43 (18)   | C13—C1—C19—C20  | 79.52 (15)   |
| C4—C5—C10—C9  | 179.82 (11)  | C1-C19-C20-C21  | -111.01 (15) |
| O3—C9—C10—N1  | -0.96 (16)   | C19—C20—C21—C23 | 2.4 (2)      |
| C8-C9-C10-N1  | 179.75 (11)  | C19—C20—C21—C22 | 179.80 (13)  |

# Hydrogen-bond geometry (Å, °)

| D—H···A                                           | <i>D</i> —Н | H…A        | $D \cdots A$ | D—H··· $A$ |
|---------------------------------------------------|-------------|------------|--------------|------------|
| 01—H101···O2                                      | 0.915 (19)  | 1.699 (19) | 2.5528 (13)  | 154.1 (17) |
| O3—H1O3···O2 <sup>i</sup>                         | 0.845 (19)  | 1.923 (19) | 2.7501 (12)  | 165.9 (19) |
| N1—H1N1…O3                                        | 0.880 (18)  | 2.333 (18) | 2.6893 (13)  | 104.3 (13) |
| C8—H8A···O2 <sup>i</sup>                          | 0.991 (19)  | 2.565 (18) | 3.2918 (16)  | 130.1 (13) |
| C14—H14A…O4                                       | 0.969 (19)  | 2.254 (17) | 2.7752 (16)  | 112.6 (12) |
| С19—Н19А…О1                                       | 0.957 (16)  | 2.352 (15) | 2.8197 (17)  | 109.6 (11) |
| Symmetry codes: (i) $-x+2$ , $y+1/2$ , $-z+1/2$ . |             |            |              |            |





